Phosphodiesterase 4D Deficiency in the Ryanodine-Receptor Complex Promotes Heart Failure and Arrhythmias
نویسندگان
چکیده
Phosphodiesterases (PDEs) regulate the local concentration of 3',5' cyclic adenosine monophosphate (cAMP) within cells. cAMP activates the cAMP-dependent protein kinase (PKA). In patients, PDE inhibitors have been linked to heart failure and cardiac arrhythmias, although the mechanisms are not understood. We show that PDE4D gene inactivation in mice results in a progressive cardiomyopathy, accelerated heart failure after myocardial infarction, and cardiac arrhythmias. The phosphodiesterase 4D3 (PDE4D3) was found in the cardiac ryanodine receptor (RyR2)/calcium-release-channel complex (required for excitation-contraction [EC] coupling in heart muscle). PDE4D3 levels in the RyR2 complex were reduced in failing human hearts, contributing to PKA-hyperphosphorylated, "leaky" RyR2 channels that promote cardiac dysfunction and arrhythmias. Cardiac arrhythmias and dysfunction associated with PDE4 inhibition or deficiency were suppressed in mice harboring RyR2 that cannot be PKA phosphorylated. These data suggest that reduced PDE4D activity causes defective RyR2-channel function associated with heart failure and arrhythmias.
منابع مشابه
Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction.
RATIONALE Phosphodiesterase 2 is a dual substrate esterase, which has the unique property to be stimulated by cGMP, but primarily hydrolyzes cAMP. Myocardial phosphodiesterase 2 is upregulated in human heart failure, but its role in the heart is unknown. OBJECTIVE To explore the role of phosphodiesterase 2 in cardiac function, propensity to arrhythmia, and myocardial infarction. METHODS AND...
متن کاملRole of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease.
Cardiac ryanodine receptor type 2 plays a key role in excitation-contraction coupling. The ryanodine receptor type 2 channel protein is modulated by various post-translational modifications, including phosphorylation by protein kinase A and Ca(2+)/calmodulin protein kinase II. Despite extensive research in this area, the functional effects of ryanodine receptor type 2 phosphorylation remain dis...
متن کاملMineralocorticoid modulation of cardiac ryanodine receptor activity is associated with downregulation of FK506-binding proteins.
BACKGROUND The mineralocorticoid pathway is involved in cardiac arrhythmias associated with heart failure through mechanisms that are incompletely understood. Defective regulation of the cardiac ryanodine receptor (RyR) is an important cause of the initiation of arrhythmias. Here, we examined whether the aldosterone pathway might modulate RyR function. METHODS AND RESULTS Using the whole-cell...
متن کاملGenetic deletion of Rnd3/RhoE results in mouse heart calcium leakage through upregulation of protein kinase A signaling.
RATIONALE Rnd3, a small Rho GTPase, is involved in the regulation of cell actin cytoskeleton dynamics, cell migration, and proliferation. The biological function of Rnd3 in the heart remains unexplored. OBJECTIVE To define the functional role of the Rnd3 gene in the animal heart and investigate the associated molecular mechanism. METHODS AND RESULTS By loss-of-function approaches, we discov...
متن کاملRyanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure.
BACKGROUND approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 123 شماره
صفحات -
تاریخ انتشار 2005